Produktname:4-({5-oxo-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-2-yl}amino)-N-[(thiophen-2-yl)methyl]benzamide
IUPAC Name:4-({5-oxo-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-2-yl}amino)-N-[(thiophen-2-yl)methyl]benzamide
- CAS:1114627-62-1
- Molekulare Formel:C21H15N5O2S2
- Reinheit:95%+
- Katalognummer:CM686410
- Molekulargewicht:433.5
Packungseinheit |
Verfügbarer Vorrat |
Preis($) |
Menge |
Nur für den Einsatz in Forschung und Entwicklung..
Produkt-Details
- CAS-Nr.:1114627-62-1
- Molekulare Formel:C21H15N5O2S2
- Schmelzpunkt:-
- SMILES-Code:O=C(NCC1=CC=CS1)C1=CC=C(NC2=NN3C(S2)=NC2=C(C=CC=C2)C3=O)C=C1
- Dichte:
- Katalognummer:CM686410
- Molekulargewicht:433.5
- Siedepunkt:
- Mdl-Nr.:
- Lagerung:
Category Infos
- Thiophenes
- Thiophene is a five-membered heterocyclic compound containing a sulfur heteroatom with the molecular formula C4H4S. Thiophene is aromatic and is very similar to benzene; electrophilic substitution reaction is easier than benzene, and it is mainly substituted at the 2-position. Thiophene ring system has certain stability to oxidant.
- Quinazolines
- Quinazolines belong to heterocyclic chemistry, also known as 1,3-naphthalenes. The backbone consists of two six-membered aromatic rings fused to each other, with two nitrogen atoms at positions 1 and 3 on the backbone. The presence of these two nitrogen atoms in quinazoline increases its importance in pharmaceutical and biological reactions. Quinazolines and their derivatives are among the most important heterocyclic compounds due to their diverse chemical reactivity and important range of biological activities.
- Thiadiazoles
- Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.