Produktname:2-({3-[4-(3-methylphenyl)piperazine-1-carbonyl]phenyl}amino)-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-5-one

IUPAC Name:2-({3-[4-(3-methylphenyl)piperazine-1-carbonyl]phenyl}amino)-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-5-one

CAS:1114648-29-1
Molekulare Formel:C27H24N6O2S
Reinheit:95%+
Katalognummer:CM675994
Molekulargewicht:496.59

Packungseinheit Verfügbarer Vorrat Preis($) Menge

Nur für den Einsatz in Forschung und Entwicklung..

Anfrage-Formular

   refresh    

Produkt-Details

CAS-Nr.:1114648-29-1
Molekulare Formel:C27H24N6O2S
Schmelzpunkt:-
SMILES-Code:CC1=CC=CC(=C1)N1CCN(CC1)C(=O)C1=CC=CC(NC2=NN3C(S2)=NC2=C(C=CC=C2)C3=O)=C1
Dichte:
Katalognummer:CM675994
Molekulargewicht:496.59
Siedepunkt:
Mdl-Nr.:
Lagerung:

Category Infos

Piperazines
Piperazine is an organic compound consisting of a six-membered ring containing two nitrogen atoms in opposite positions in the ring. The chemical formula of piperazine is C4H10N2, and it is an important pharmaceutical intermediate. Pyrimidines and piperazines are known to be the backbone of many bulk compounds and important core structures for approved drugs; studies have shown that combining a pyridine ring with a piperazine moiety within a single structural framework enhances biological activity.
Quinazolines
Quinazolines belong to heterocyclic chemistry, also known as 1,3-naphthalenes. The backbone consists of two six-membered aromatic rings fused to each other, with two nitrogen atoms at positions 1 and 3 on the backbone. The presence of these two nitrogen atoms in quinazoline increases its importance in pharmaceutical and biological reactions. Quinazolines and their derivatives are among the most important heterocyclic compounds due to their diverse chemical reactivity and important range of biological activities.
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.