Produktname:N'-{[1-(4-methyl-1,2,3-thiadiazole-5-carbonyl)piperidin-4-yl]methyl}-N-(1,2-oxazol-3-yl)ethanediamide

IUPAC Name:N'-{[1-(4-methyl-1,2,3-thiadiazole-5-carbonyl)piperidin-4-yl]methyl}-N-(1,2-oxazol-3-yl)ethanediamide

CAS:1327217-64-0
Molekulare Formel:C15H18N6O4S
Reinheit:95%+
Katalognummer:CM991452
Molekulargewicht:378.41

Packungseinheit Verfügbarer Vorrat Preis($) Menge

Nur für den Einsatz in Forschung und Entwicklung..

Anfrage-Formular

   refresh    

Produkt-Details

CAS-Nr.:1327217-64-0
Molekulare Formel:C15H18N6O4S
Schmelzpunkt:-
SMILES-Code:CC1=C(SN=N1)C(=O)N1CCC(CNC(=O)C(=O)NC2=NOC=C2)CC1
Dichte:
Katalognummer:CM991452
Molekulargewicht:378.41
Siedepunkt:
Mdl-Nr.:
Lagerung:

Category Infos

Piperidines
Piperidine is an azacycloalkane that is cyclohexane in which one of the carbons is replaced by a nitrogen. Although piperidine is a common organic compound, it is an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.
Piperidine,Piperidine Price
if you want to know the latest news about piperidine and piperidine price, please come to our website and get a quote for free.
Isoxazoles
Isoxazole is a liquid heterocyclic compound C3H3NO isomeric with oxazole and having a penetrating odor like that of pyridine. Isoxazoles belong to an important class of five-membered aromatic heterocycles containing two electronegative heteroatoms, nitrogen and oxygen, in a 1,2-relationship and three regular sp2 carbon atoms. These molecules are found to be key components in various synthetic products in daily use and also present as a pharmacophore essential for biological activity in many drugs and bioactive natural products. In addition, isoxazoles have demonstrated their ability to exhibit hydrogen bond donor/acceptor interactions with a variety of enzymes and receptors.
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.