Produktname:4,4',4''-(Benzene-1,3,5-triyl)tris(1-naphthoic acid)

IUPAC Name:4-[3,5-bis(4-carboxynaphthalen-1-yl)phenyl]naphthalene-1-carboxylic acid

CAS:1660960-34-8
Molekulare Formel:C39H24O6
Reinheit:97%
Katalognummer:CM268493
Molekulargewicht:588.62

Packungseinheit Verfügbarer Vorrat Preis($) Menge

Nur für den Einsatz in Forschung und Entwicklung..

Anfrage-Formular

   refresh    

Produkt-Details

CAS-Nr.:1660960-34-8
Molekulare Formel:C39H24O6
Schmelzpunkt:-
SMILES-Code:O=C(O)C1=C2C=CC=CC2=C(C3=CC(C4=C5C=CC=CC5=C(C(O)=O)C=C4)=CC(C6=C7C=CC=CC7=C(C(O)=O)C=C6)=C3)C=C1
Dichte:
Katalognummer:CM268493
Molekulargewicht:588.62
Siedepunkt:
Mdl-Nr.:
Lagerung:

Category Infos

Naphthalenes
Naphthalene is a hydrocarbon produced by the distillation of coal tar and is an aromatic white crystalline substance. Naphthalene is the most abundant component in coal tar. It is used as an insect repellant and insect fumigant. The compound is used in the manufacture of celluloid, dyes, hydrogenated naphthalenes, oil fumes, smokeless powders and synthetic resins.
Hydrogen Storage Materials
Hydrogen storage materials are materials which can store and release hydrogen gas. These materials are important for the development of hydrogen fuel cell technology, as they allow for the safe and efficient storage of hydrogen. There are several types of hydrogen storage materials, including: 1. Sorbent Materials. Carbon-based materials such as nanotubes, fullerenes, graphene, mesoporous silica, metal-organic frameworks (MOFs), isoreticular metal-organic frameworks (IRMOFs), covalent-organic frameworks (COFs), and clathrates belong to this category. 2. Complex Hydrides. These consist of light metal hydrides and chemical hydrides. 3. Nanostructured materials. These are composed of functionalized sorbent materials as well as nanoparticles of complex hydrides. The development of efficient and cost-effective hydrogen storage materials is crucial for the widespread adoption of hydrogen fuel cell technology.