Produktname:MePTC

IUPAC Name:7,18-dimethyl-7,18-diazaheptacyclo[14.6.2.2²,⁵.0³,¹².0⁴,⁹.0¹³,²³.0²⁰,²⁴]hexacosa-1(22),2,4,9,11,13,15,20,23,25-decaene-6,8,17,19-tetrone

CAS:5521-31-3
Molekulare Formel:C26H14N2O4
Reinheit:95%
Katalognummer:CM186406
Molekulargewicht:418.41

Packungseinheit Verfügbarer Vorrat Preis($) Menge
CM186406-25g in stock ǟijƚ
CM186406-100g in stock ƴǎǎ

Nur für den Einsatz in Forschung und Entwicklung..

Anfrage-Formular

   refresh    

Produkt-Details

CAS-Nr.:5521-31-3
Molekulare Formel:C26H14N2O4
Schmelzpunkt:-
SMILES-Code:O=C1N(C(C2=CC=C(C3=C4C=CC1=C23)C5=CC=C6C(N(C(C7=CC=C4C5=C76)=O)C)=O)=O)C
Dichte:
Katalognummer:CM186406
Molekulargewicht:418.41
Siedepunkt:
Mdl-Nr.:MFCD00071975
Lagerung:

Category Infos

Solar Cell Materials
Solar Cell Materials refers to the materials used in the construction and functioning of solar cells. These materials play a crucial role in converting sunlight into electrical energy through the photovoltaic effect. Some common solar cell materials include: perovskite-based solar cells (PSCs) materials, dye-sensitized solar cells (DSSCs) materials, organic photovoltaic (OPV) materials. It's important to note that ongoing research and development in solar cell materials aim to improve efficiency, reduce costs, and explore new alternatives for sustainable energy generation.
Organic Photovoltaic (OPV)
Organic Photovoltaic (OPV) refers to a type of solar cell technology that utilizes organic materials to convert sunlight into electricity. Unlike traditional photovoltaic cells, which are typically made of inorganic semiconductors like silicon, OPV uses organic molecules or polymers as the active material. This technology is more suitable for large-scale power generation, as organic semiconductors are a less expensive alternative to inorganic semiconductors.
Organic Photodiode (OPD)
The most common type of organic photodetector is the organic photodiode (OPD). The photodiode has a simple structure in which an active layer is sandwiched between a transparent electrode and a metal electrode. In contrast to OLEDs, organic photodiodes (OPDs) utilize the organic semiconductor to absorb incident light and convert it to electric current. The structure and working principle are more like organic solar cells. Among the various organic photodetectors, organic photodiodes (OPDs) have been the most widely studied due to their fast response, high sensitivity, and full use of the existing research base of organic photovoltaics (OPVs).